Developing a Resilient Texas Transportation System

Jolanda Prozzi Victoria Wilson Andrew Birt

SEC Laboratory

Transportation Resiliency Forum

- Forum Objectives:
 - Review state-of-the-practice in resiliency research in Texas
 - Discussed Texas Transportation Resiliency Framework
 - Identify steps and research needed/ gaps in developing Texas Transportation Resiliency Framework

Transportation Resiliency Forum

- Morning Session
 - "FHWA Resiliency Framework for Extreme Weather Events" (FHWA)
 - "Ecological Resiliency: Lessons for Transportation" (TTI)
 - "Emerging Issues in Resiliency to Weather and Climate" (Texas A&M University)
 - "Network-Level Analysis of Transportation Resilience" (Texas A&M University)
 - "Transit-Oriented, High-Interaction Neighborhoods Key to a Resilient Transportation System" (Texas A&M University)
 - "Coastal Shipping Resiliency Following Major Hurricanes and Trains in Coastal Crosswinds" (Texas A&M University)
 - "Understanding the Influence of Climate Change on Texas Pavements" (University of Texas at El Paso)
 - "Combined Sustainability Resiliency (S-R) Framework for Assessing Three Transportation Infrastructure Case Studies" (University of Texas at Arlington)

Transportation Resiliency Forum

- Afternoon Session
 - Characteristics of desired resilient transportation system
 - Vulnerable transportation system components
 - Data/tools
 - To understand, assess and predict impacts of long-term trends on resiliency
 - To quantify impacts of extreme events and options for mitigation, recovery, and adaption

Resilient Texas Transportation Planning Framework

- 1. Define resiliency for Texas' transportation system
- 2. Identify resiliency goals and objectives
- 3. Identify resiliency performance measures
- 4. Assess vulnerability of Texas' transportation system
- 5. Assess/quantify adaption, mitigation and recovery options

2. Identify Resiliency Goals/ Objectives

- Develop standalone resiliency goal
 - Maintain critical function after extreme weather event
 - Minimize recovery time
 - Minimize infrastructure damage/operational impacts
- Adapt existing planning goal to include resiliency objectives

4. Assess Vulnerability

- a. Identify and characterize extreme weather events of concern
- b. Determine risk/likelihood of extreme weather events occurring
- c. Identify vulnerable transportation system elements
- d. Determine potential impact of extreme weather event if occurring
- e. Identify the critical transportation assets

4a. Identify and characterize extreme weather events of concern

Projected Climate Impacts (All Texas Counties)

Climate Factor	Projected Impact
Precipitation	 X i š) i Xdàyñincrease in number of wettest days (kewnissions assumptions) X i š) i Xdáyi-increase in number of wettest days (hieghnissions assumptions) X i š-} i Xnòchi-increase in monthly runoff
Extreme heat/higher temperature	 x <1- to 34-day increase in the number of hottest days x ï X ì & š } F Xncrease in annual mean maximum temperature
Drought	 x <1- š } -dźay increase in the number of consecutive dry days at a time x ì X ì ì ôs-} ì X ìnôchñ-reduction in mean annual soil storage x Potential increase in drought conditions
Extreme weather events	x Potential for more severe storms
Sea-level rise (Gulf of Mexico)	xìš}õuu ‰ ŒÇ Œ~}Œìš}ï(š‰Œvšµ

4d. Determine potential impact of extreme weather event if occurring

Climate Stressors	Examples of Impacts on Transportation Infrastructure and Operations
Increases in very hot days and heat waves	 x d Z Œ u o Æ ‰ v•]}v }v Œ] P Æ ‰ v•]}v i}]vš• v ‰ À •µ x Concerns about pavement degradation rates, traffeitated rutting, and migration of liquid asphalt x Railtrack deformities x Limits on periods of construction activity due to health and safety concerns
Sea level rise combined with storm surges	 x Inundation of roads, rail lines and airport runways in coastal areas x Erosion of road base and bridge supports x Reduced clearance under bridges, and changes in harbor and port facilities to accommodate h tides and storm surges x More frequent interruptions to coastal and lolying roadway travel and rail service due to storm surges x More severe storm surges and wave heights, requiring evacuation
Increases in intense precipitation events	 x Increases in weatherelated delays and traffic disruptions x Increased flooding of evacuation routes x Increases in road washout, damages to breid support structures, and landslides and mudslides that damage roadways and tracks x Increases in scouring of pipeline roadbeds and damage to pipelines
Increase in frequency of intense hurricanes	 x Greater probability of infrastructure failures x Increased threat to stability of bridge decks x Impacts on harbor infrastructure from wave damage and storm surges

5. Identify Adaption, Mitigation, Recovery Options

- Build/rebuild assets to withstand anticipated environmental conditions
- Site new facilities outside floodplains or reconstruct at-risk highways considering more conservative flood frequency event assumptions
- Increase system redundancy
- More frequent maintenance schedules

5. Identify Adaption, Mitigation,

Inform Project Development and Management

Past and Ongoing Research

- Vulnerable Freight Infrastructure in Texas
- Applying Resilience Theory to Transportation Problems
- Update Rainfall Coefficients with 2018 NOAA Atlas 14 Rainfall Data (Ongoing)
- Developing a Resilient Texas Transportation System
- Asset Management, Extreme Weather, and Proxy Indicators (FHWA Pilot Project)
- Addressing Resiliency in Regional Transportation Plans (Ongoing)

1. Frameworks are important

/# Torse A8M

 $\frac{3}{4}$ $\frac{3}{4}$

- 1. Frameworks are important
 - ³/₄ Guide planning, programming, design, construction, and maintenance of transportation system

Frameworks
 are important
 ³⁄₄ Assess risk to
 specific asset

- 3. Data and models/tools are important
 - ³/₄ Data (too much, not enough, not quite right)
 - ³/₄ Tools/models
 - Understanding pavement impacts more frequent maintenance of culverts, improved drainage, adding shoulders to mitigate flooding on pavement service life (heat?)
 - í Lifecycle planning analysis does not consider the cost and disruption of road closures

- 3. How to plan?
 - 3/4 Feedback into planning process

Questions?

